TAREAS DE MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS -4º DE ESO (Del 11 al 22 de mayo) - Carlos Ojeda

Si hay alguna duda, pregunta al correo: cojeda@iesvalledelsol.es

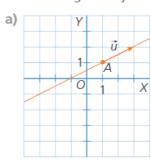
Hay que enviar fotos antes del sábado 23/5/20 (incluido) de los ejercicios nuevos que habéis hecho estas semanas a cojeda@iesvalledelsol.es . Solo voy a comprobar que estén hechos o intentados, no voy a comprobar las soluciones, así que no os preocupéis si no está todo bien, pero quiero saber que hacéis y no hacéis.

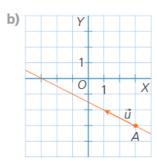
Os volveré a enviar una plantilla con las soluciones.

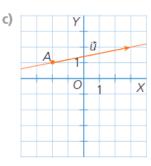
Lunes 11/5/20:

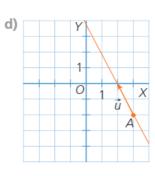
¡Hola a todos! Espero que hayáis pasado una buena semana. Vamos a empezar corrigiendo lo que hicisteis la semana pasada. De la página 177, los ejercicios: 17, 18, 19, 20, 21, 22, 23 y 25.

Observa las gráficas y determina la ecuación vectorial de las rectas en cada caso.



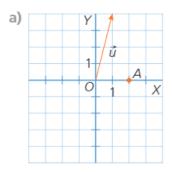


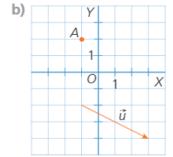




- a) $(x, y) = (1, 1) + \lambda(2, 1)$
- **b)** $(x, y) = (3, -3) + \lambda(-2, 1)$

- c) $(x, y) = (-2, 1) + \lambda(5, 1)$
- d) $(x, y) = (3, -2) + \lambda(-1, 2)$
- Escribe la expresión de la ecuación vectorial de la recta que pasa por el punto A y tiene por vector director \vec{u} .





a) $(x, y) = (2, 0) + \lambda(1, 4)$

- **b)** $(x, y) = (-1, 2) + \lambda(4, -2)$
- 19 Una recta pasa por los puntos A(1, -3) y B(2, 1). Averigua:
 - a) Su vector director.
 - a) $\vec{u} = (2-1, 1-(-3)) = (1, 4)$

- b) La ecuación vectorial de la recta.
- **b)** $(x, y) = (1, -3) + \lambda(1, 4)$
- 20 Una recta pasa por el punto A(3, 4) y tiene por vector director $\vec{u} = (-1, 3)$. Determina cuatro puntos más por los que pasa dicha recta.

La ecuación vectorial de la recta es: $(x, y) = (3, 4) + \lambda(-1, 3)$

Respuesta abierta. Por ejemplo:

Para
$$\lambda = 1$$
: $(x, y) = (3, 4) + (-1, 3) = (2, 7)$

Para
$$\lambda = -1$$
: $(x, y) = (3, 4) + (-1)(-1, 3) = (4, 1)$

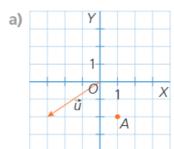
Para
$$\lambda = 2$$
: $(x \ v) = (3 \ 4) + 2(-1 \ 3) = (1 \ 10)$

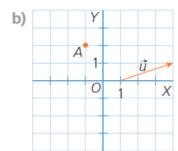
Para
$$\lambda = 2$$
: $(x, y) = (3, 4) + 2(-1, 3) = (1, 10)$ Para $\lambda = -2$: $(x, y) = (3, 4) + (-2)(-1, 3) = (5, -2)$

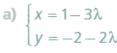
- Decide qué puntos entre los siguientes pertenecen a la recta r: $(x, y) = (-1, 2) + \lambda(3, 1)$.
 - a) A(2, 3

b) B(1, -3)

- c) C(-4, 1)
- d) D(0, 2)
- a) (2, 3) = (-1, 2) + λ (3, 1) \rightarrow $\begin{cases} 2 = -1 + 3\lambda \\ 3 = 2 + \lambda \end{cases} \rightarrow \begin{cases} \lambda = 1 \\ \lambda = 1 \end{cases} \rightarrow A(2, 3) \text{ pertenece a la recta.}$
- **b)** $(1, -3) = (-1, 2) + \lambda(3, 1) \rightarrow \begin{cases} 1 = -1 + 3\lambda \\ -3 = 2 + \lambda \end{cases} \rightarrow \begin{cases} \lambda = 0 \\ \lambda = -5 \end{cases} \rightarrow B(1, -3) \text{ no pertenece a la recta.}$
- c) $(-4, 1) = (-1, 2) + \lambda(3, 1) \rightarrow \begin{cases} -4 = -1 + 3\lambda \\ 1 = 2 + \lambda \end{cases} \rightarrow \begin{cases} \lambda = -1 \\ \lambda = -1 \end{cases} \rightarrow C(-4, 1) \text{ pertenece a la recta.}$
- d) (0, 2) = (-1, 2) + λ (3, 1) \rightarrow $\begin{cases} 0 = -1 + 3\lambda \\ 2 = 2 + \lambda \end{cases} \rightarrow \begin{cases} \lambda = \frac{1}{3} \\ \lambda = 0 \end{cases} \rightarrow D(0, 2)$ no pertenece a la recta.
- Halla las ecuaciones paramétricas de la recta que pasa por el punto A(2,4) y tiene por vector director $\vec{u}=(4,7)$. Las ecuaciones paramétricas son: $\begin{cases} x=2+4\lambda\\ y=4+7\lambda \end{cases}$
- Determina las ecuaciones paramétricas de la recta que pasa por el punto A en la dirección del vector \vec{u} .







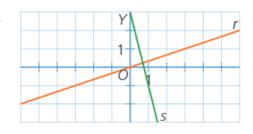
b) $\begin{cases} x = -1 + 3\lambda \\ y = 2 + \lambda \end{cases}$

25) Asigna a cada recta representada sus ecuaciones paramétricas.

a)
$$\begin{cases} x = -\lambda \\ y = 3 + 4\lambda \end{cases}$$

b)
$$\begin{cases} x = 3\lambda \\ y = \lambda \end{cases}$$

- a) Es la recta s.
- **b)** Es la recta *r*.



Para el 25, se puede hacer lambda=0, en los dos apartados y ver que en el apartado a sale el punto x=0, y=3,,, y en el apartado b, sale el punto x=0, y=0.

Corregid los ejercicios 28, 29 y 30 de la página 179:

- Escribe la ecuación continua de la recta: $(x, y) = (-3, 2) + \lambda(4, 1)$ La ecuación continua es: $\frac{x+3}{4} = \frac{y-2}{1}$
- Halla la ecuación continua de la recta que pasa por el punto A(1, 3) y tiene por vector director $\vec{u} = (2, 5)$ La ecuación es: $\frac{x-1}{2} = \frac{y-3}{5}$
- Determina la ecuación continua de la recta: $\begin{cases} x = 6 4\lambda \\ y = 2 + \lambda \end{cases}$ La ecuación continua es: $\frac{x 6}{-4} = \frac{y 2}{1}$

Haced de la página 179, los ejercicios: 31 (pensad cual es el vector director), 32, 33, 34, 35, 36 y 37.

Miércoles 13/5/20:

<u>Hay clases a las 11h15:</u> Vamos a ver la teoría de las páginas 180 y 182. Y algunos ejercicios de las páginas 181 y 183.

Copiad el resumen que os dejo de los apuntes de la página 180:

5. ECUACIONES EXPLÍCITA Y GENERAL

* ECUACIÓN EXPLÍCITA:

Se obtiene despejando la variable dependiente (y) en la ecuación punto-pendiente.

Así, la ecuación explícita de la recta que pasa por un punto, $A(a_1,a_2)$, y tiene la dirección del vector $\vec{v} = (v_1, v_2)$ es:

$$y = \frac{V_2}{V_1} \times + \left(-\frac{V_2}{V_1} \alpha_1 + \alpha_2 \right) \longrightarrow y = mx + n$$

siendo m la pendiente de la recta y n la ordenada en el origen.

Ejemplo: A partir de la ec. punto - pendiente $y-2=\frac{1}{4}\cdot(x-1)$: $y=\frac{1}{4}(x-1)+2 \rightarrow y=\frac{1}{4}x-\frac{1}{4}+2 \rightarrow y=\frac{1}{4}x+\frac{7}{4}$

 $\longrightarrow \begin{cases} m = \frac{1}{4} \text{ cs la pendiente de la recta} \\ n = \frac{7}{2} \text{ es la ordenada en el origen} \end{cases}$

* ECUACIÓN GENERAL O IMPLÍCITA:

Se obtiene agrupando todos los términos de la ecuación continua de la recta en un miembro.

Así, la ecuación general o implícita de la recta que pasa por un punto, $A(a_1,a_2)$, y tiene la dirección del vector $\vec{v}=(v_1,v_2)$ es:

$$Ax + By + C = 0$$

siendo A=v2, B=-U1 y C=V1 a2-U2 a1

Ejemplo: A partir de la ec. punto-pendiente: $y-2=\frac{1}{4}\cdot(x-1)$: $4\cdot(y-2)=x-1 \rightarrow 4y-8=x-1 \rightarrow x-4y+7=0$

Mobservación: Si despejamos la "y" en la ec. general, Ax+By+C=0: $By=-Ax-C \rightarrow y= \begin{bmatrix} -A \\ B \end{bmatrix} \times \begin{bmatrix} C \\ B \end{bmatrix} \Rightarrow n$ $\begin{cases} n=\frac{-A}{B} \\ n=\frac{-C}{B} \end{cases}$

Escaneado con CamScanner director es = (-B,A)

Copiad el ejercicio resuelto y haced el ejercicio que aparece en el folio:

Ejercicio resuelto: Escribe todas las formas posibles la ecoación de la recta que pasa por los puntos A(1,2) y B(-2,5). - A(1,2) and decling the war of being to adopte B(-2,5) vector director: $\vec{u} = \vec{AB} = (-2 - 1, 5 - 2) = (-3, 3)$ Ewación vectorial: $(x,y)=(1,2)+\lambda\cdot(-3,3)$ Eciaciones paramétricas: $\begin{cases} x = 1 - 3\lambda \\ y = 2 + 3\lambda \end{cases}$ Ec. punto - pendiente: 3. (x-1)=y-2-1 $y^{-2} = -x+1$ $y = -x+1+2 \longrightarrow y = -x+3$ 2 x+y-3=0 « Ejercicio: Halla las ecuaciones de la recta r que pasa for los puntos A(1,4) y B(0,-1) en todos sus formas. the second secon

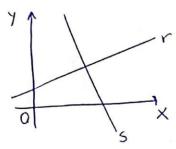
Jueves 14/5/20:

Página 181: haced los ejercicios 39, 40 (os fijáis en el resuelto de la página anterior), 41, 42, 44, 46 y 48

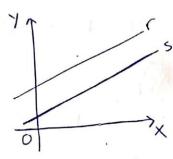
Viernes 15/5/20:

Copiad el resumen que os dejo de los apuntes de la página 182:

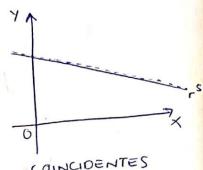
6. POSICIONES RELATIVAS DE 2 RECTAS EN EL PLANO



SECANTES



PARALELAS



COINCIDENTES

- · Las rectas secantes tienen un único punto común
- · Las rectas paralelas no tienen ningún punto común
- · Las rectas <u>coincidentes</u> tienen infinitas puntos comunes.

CLASIFICACIÓN DE RECTAS :

Si una recta r: Ax + By + C = 0, tiene por vector director $\vec{U} = (U_1, U_2)$ y otra recta s: A'x+B'y+C'=0, tiene por vector director $\vec{v}=(v_1,v_2)$:

J ona racio	. 3.1121.09	,	Cinates
rys	vectores directores	Pendientes	coeficientes de la ec.general
COINCIDENTES	$\frac{V_2}{V_4} = \frac{V_2}{V_4}$	Igvales	A = B + C
PARALELAS	$\frac{V_2}{V_1} = \frac{V_2}{V_1}$	Iguales	A' B' C'
SECANTES	$\frac{V_2}{U_1} \neq \frac{V_2}{V_1}$	Distintas	A F B'

Fijandonos en los coeficientes, se comple:

$$\frac{2}{4} = \frac{-3}{-6} = \frac{4}{8}$$

Por tanto, son rectas coincidentes

Ejemple 2: Estudia la posición relativa de las rectas {r:2x-3y+4=0} Figodonos en los conficientes Fijandonos en los coeficientes, se cumple:

$$\frac{2}{4} = \frac{-3}{-6} \neq \frac{4}{1}$$

CSEscaneado con CamScanner

Ejemplo 3: Estudia la posición relativa de las rectas { r: 2x - 3y + 4 = 0 } s: 5x + y + 4 = 0

Fijandonos en los coeficientes, se cumple:

$$\frac{2}{5} \neq \frac{-3}{1}$$

Por tanto, son rectas secantes.

$$Ly = -5 \cdot \left(\frac{-16}{17}\right) - 4$$

$$y = \frac{80}{17} - \frac{68}{17} = \frac{12}{17}$$

El punto de corte es $\left(\frac{-16}{17}, \frac{12}{17}\right)$ CSEscaneado con CamScanner

Haced de la página 183: el 53 y el 54.

Leed de la página 183 el ejercicio resuelto y hacéis el 55. Dejo los apartados a y b hechos por el libro y el a hecho por mi de dos formas diferentes:

Determina la posición relativa de los siguientes pares de rectas.

a)
$$r$$
:
$$\begin{cases} x = 1 - 3\lambda \\ y = 2 + \lambda \end{cases}$$

b)
$$r: y = 4x + 1$$

a)
$$r: \begin{cases} x = 1 - 3\lambda \\ y = 2 + \lambda \end{cases}$$
 b) $r: y = 4x + 1$ c) $r: \frac{x - 1}{4} = \frac{y - 3}{1}$ d) $r: y + 1 = 3(x - 1)$

d)
$$r: y + 1 = 3(x - 1)$$

s:
$$y = \frac{1}{3}x + 5$$

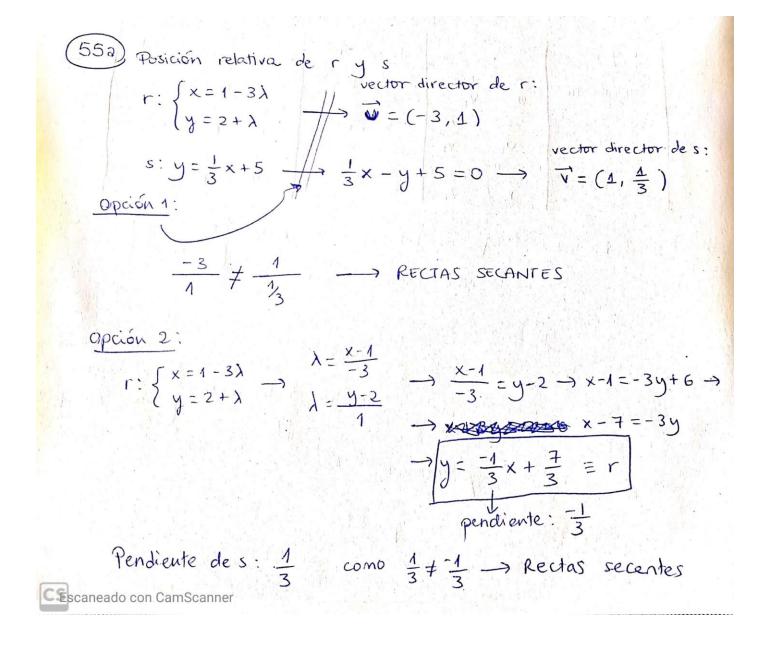
$$s: \frac{x-1}{1} = \frac{y+1}{4}$$

s:
$$\frac{x-1}{1} = \frac{y+1}{4}$$
 s: $y-2 = \frac{1}{4}(x+3)$ s: $2x-3y+6=0$

$$s: 2x - 3y + 6 = 0$$

- a) Un vector director de la recta r es $\bar{u}=(-3, 1)$ y un vector director de s es $\bar{v}=(3, 1)$, y como $\frac{3}{2}\neq\frac{1}{4}$, los vectores no son proporcionales, por lo que las pendientes de las rectas no son iguales, y las rectas son secantes
- b) La pendiente de ambas rectas es m = 4 por lo que pueden ser palalelas o coincidentes. Hallamos sus ecuaciones generales:

$$\begin{cases} r: 4x - y + 1 = 0 \\ s: 4x - y - 5 = 0 \end{cases}$$
, y como $\frac{4}{4} = \frac{-1}{-1} \neq \frac{1}{-5} \rightarrow$ Son rectas paralelas.



Lunes 18/5/20:

Haced de la página 183: 56, 57, 58 y 59. Leed el ejercicio resuelto y hacéis el 60 y 61.

59 Halla la ecuación de una recta paralela a r y que pase por el punto A(1, 2).

a)
$$r: 2x - 3y - 1 = 0$$

c)
$$r: 5x + 3y + 2 = 0$$

b)
$$r: 2x + y + 1 = 0$$

d)
$$r: x - 3y - 2 = 0$$

a) Por ser paralela a r: 2x - 3y + C = 0

Por pasar por A(1, 2): $2 \cdot 1 - 3 \cdot 2 + C = 0 \rightarrow C = 4$, la recta pedida es: 2x - 3y + 4 = 0

b) Será de la forma: 2x + y + C = 0

Por pasar por A(1, 2): $2 \cdot 1 + 2 + C = 0 \rightarrow C = -4$, así, la recta pedida es: 2x + y - 4 = 0

Miércoles 20/5/20:

<u>Hay clases a las 11h15:</u> Vamos a empezar el tema 9. Funciones. Vamos a verlo por otros apuntes distintos de los del libro. En este tema vamos a ver el dominio, límites, asíntotas y continuidad de funciones.

En la clase de hoy vemos, dominio y límites de funciones.

Tenéis que copiar los apuntes del siguiente folio (donde pone 1.1. podéis poner 1 y donde pone 1.2 ponéis 2). En el apartado 1.2. cuando pone los ejemplos de las funciones a trozos no tiene nada que ver:

- las expresiones algebraicas que son funciones a trozos
- las fotos que son ejemplos de representación de funciones a trozos

Pero no coinciden expresión algebraica y representación de la función aunque estén arriba y abajo son todos ejemplos diferentes.

NO ME IMPORTA QUE RESUMÁIS COPIANDO, PERO POR FAVOR ENTEDED TODO Y SINO PREGUNTÁIS

1.1 Concepto de Dominio de una función

Función: es una regla que asigna a cada número real X un único número real Y.

$$X \in Dom \subset \mathcal{R}$$

$$Dom \rightarrow \mathcal{R}$$

$$x \to f(x)$$
 $y = f(x)$

Ejemplos:
$$f(x) = x + 2$$
; $y = x^2 - 5x + 4$; $f(x) = 4x^3 - 6x^2 - 7$; $y = \frac{x+2}{x-3}$; $f(x) = \frac{1}{x+2}$; $y = 3^x$

$$f(x) = 4x^3 - 6x$$

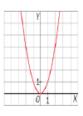
$$y = \frac{x+2}{x-2}$$
;

$$f(x) = \frac{1}{x+2}$$
; $y = 3^x$

La X es la variable independiente

La Y es la variable dependiente, ya que depende del valor de X.

f(x) es único para cada valor de $X \in Dom$ Las dos de la izquierda no son funciones, la de la derecha sí. En una función, una línea vertical no puede cortar a la gráfica en dos puntos distintos



Dominio: Es el conjunto de valores que puede tomar la variable X. Dom f(x)

Imagen ó Recorrido: Es el conjunto de valores que puede tomar la variable Y.

Dom f(x): \mathbb{R}

Dom f(x): \mathbb{R}

Dom f(x): $\mathbb{R} - \{1\}$

Dom f(x): $\mathbb{R} - \{2\}$

1.2 Funciones a trozos

Función a trozos: Es aquella en la que la regla que asigna a cada número real X un único número real Y, es diferente dependiendo del tramo en el que se encuentre la X.

Ejemplo:
$$f(x) = \begin{cases} 1 - 2x & si & x \le \\ \frac{1}{x+1} & si & x > \end{cases}$$

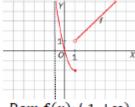
$$f(x) = \begin{cases} x^3 - 4x^2 \\ 1 - \frac{4}{x} \end{cases}$$

$$si \quad x \le 0$$

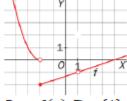
$$si \quad 0 < x \le 4$$

$$si \quad x > 4$$

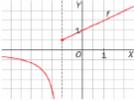
Ejemplo:
$$f(x) = \begin{cases} \frac{1-2x}{x+1} & \text{si } x \le 0 \\ \frac{1}{x+1} & \text{si } x > 0 \end{cases}$$
 $f(x) = \begin{cases} \frac{x}{2} & \text{si } x \le 0 \\ x^3 - 4x^2 & \text{si } 0 < x \le 4 \end{cases}$ $f(x) = \begin{cases} -x^2 + x + 2 & \text{si } -1 \le x \le 0 \\ -x^2 - x + 2 & \text{si } 0 < x \le 1 \end{cases}$



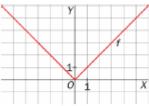
 $Dom f(x): (-1, +\infty)$



 $Dom f(x): \mathbb{R} - \{1\}$



Dom f(x): \mathbb{R}



Dom f(x): \mathbb{R}

Jueves 21/5/20: Copiad los apuntes y haced el ejercicio 1.

1.3 Dominios de funciones:

• Polinómicas: Dom f(x): \mathbb{R} La X puede tomar cualquier valor entre $(-\infty, +\infty)$

Ejemplos: f(x) = x - 3 $f(x) = x^2 - 5x + 4$ $f(x) = x^3 - 1$ $Dom f(x): \mathbb{R}$

Función racional: es el cociente de dos funciones polinómicas.

El cociente no existirá para los valores que hagan que el denominador valga 0.

 $Dom f(x): \mathbb{R} - \{valores que anulen denominador\}$

Igualamos el denominador a cero, para ver qué valores anulan el denominador, y resolvemos la ecuación.

Ejemplo:
$$f(x) = \frac{x-2}{x-1}$$
 \rightarrow $x-1=0$ \rightarrow $x=1$ \rightarrow $Dom f(x): \mathbb{R} - \{1\}$

Función de proporcionalidad Inversa $\rightarrow f(x) = \frac{k}{x} \rightarrow \text{Ejemplo: } f(x) = \frac{1}{x} \rightarrow x = 0 \rightarrow Dom f(x): \mathbb{R} - \{0\}$

• Función exponencial: es un número real elevado a una función $\rightarrow f(x) = a^{g(x)}$

El dominio será semejante al de la función del exponente.

Ejemplos: $f(x) = e^{-x+1}$ ó $f(x) = 3^{x+2}$ Dom f(x): \mathbb{R} ya que el exponente es un polinomio.

Ejemplo: $f(x) = 3^{\frac{1}{x}}$ Dom f(x) es el dominio de $\frac{1}{x}$ \rightarrow Dom f(x): $\mathbb{R} - \{0\}$

- Función irracional : $f(x) = \sqrt[n]{g(x)}$
 - O Con n impar: El dominio será el de g(x).

Ejemplo: $f(x) = \sqrt[3]{x^2 - 1}$ Dom f(x) es el dominio de $x^2 - 1$ \to Dom f(x): \mathbb{R}

O Con n par: f(x) no puede ser negativa. Tiene que ser nula o positiva $\rightarrow g(x) \ge 0$.

Resolvemos la inecuación $g(x) \ge 0$.

Vemos para qué valores se anula la función y damos valores a ambos lados, para ver cuándo es positiva y cuando es negativa.

Si no podemos anular la función es que siempre es positiva o siempre es negativa. Damos cualquier valor y si es positiva la función para ese valor, siempre será positiva, en caso contrario siempre será negativa.

• Función logarítmica: $f(x) = \log_a g(x)$

g(x) no puede ser nula ni negativa. Tiene que ser positiva $\rightarrow g(x) > 0$.

Si g(x) es nula o negativa el logaritmo no se puede realizar. No existirá la función para esos valores.

Existe solamente para aquellos valores en los que g(x) es positiva, o sea cuando la función está por encima del eje de las X.

Resolvemos la inecuación g(x) > 0.

f(x) es negativa o nula, el logaritmo no puede realizarse, no existirá el logaritmo.

Por lo tanto resolvemos la inecuación f(x) > 0.

Vemos para qué valores se anula la función y damos valores a ambos lados, para ver cuándo es positiva y cuando es negativa.

Si no podemos anular la función es que siempre es positiva o siempre es negativa. Damos cualquier valor y si es positiva la función para ese valor, siempre será positiva, en caso contrario siempre será negativa.

Ejemplo:
$$f(x) = log(x^2 + 1) \rightarrow g(x) > 0 \rightarrow g(x) = 0 \rightarrow x^2 - 1 = 0$$

 $\rightarrow x^2 = -1 \rightarrow Sin solución$. O siempre es positiva o siempre es negativa.

Damos un valor cualquiera $\rightarrow x = 0 \rightarrow x^2 + 1 = 1 \rightarrow \text{Siempre} + \underline{\qquad}$ Dom f(x): \mathbb{R}

$$\text{Ejemplo:} \ f(x) = \left\{ \begin{array}{ll} \frac{5x}{x+1} & \text{si} \quad x \leq 0 \\ \frac{3}{x+3} & \text{si} \quad x > 0 \end{array} \right. \rightarrow \left\{ \begin{array}{ll} x+1 \neq 0 \rightarrow x+1 = 0 \rightarrow x = -1 \in Rama \\ x+3 \neq 0 \rightarrow x+3 = 0 \rightarrow x = -3 \notin Rama \end{array} \right. \rightarrow Dom \, f(x) : \mathbb{R} - \{-1\}$$

> Ejercicio 1: Halla el dominio de:

a)
$$g(x) = x^2 - 3x$$

b)
$$f(x) = \frac{2x+3}{x-4}$$

c)
$$y = \frac{-3}{x}$$

a)
$$g(x) = x^2 - 3x$$
 b) $f(x) = \frac{2x+3}{x-4}$ c) $y = \frac{-3}{x}$ d) $f(x) = \frac{1}{x^2+1}$ e) $f(x) = \sqrt{x-3}$ f) $f(x) = \ln(x+2)$ g) $f(x) = e^{4+5x}$ h) $f(x) = e^{\frac{1}{x}}$

e)
$$f(x) = \sqrt{x - 3}$$

$$f(x) = \ln(x+2)$$

$$g) f(x) = e^{4+5x}$$

$$h) f(x) = e^{\frac{1}{x}}$$

$$i) \ f(x) = \begin{cases} \frac{e^{-x}}{x+1} \end{cases}$$

$$si \quad x \leq 1$$

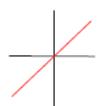
$$j) B(t) = \begin{cases} t \\ \frac{t}{t-1} \end{cases}$$

$$si \quad t < 0$$

i)
$$f(x) = \begin{cases} e^{-x} & si & x \le 1 \\ \frac{x+1}{x} & si & x > 1 \end{cases}$$
 j) $B(t) = \begin{cases} t & si & t < 0 \\ \frac{t}{t-1} & si & t \ge 0 \end{cases}$ k) $B(t) = \begin{cases} -\frac{2}{t+2} & si & t \le 0 \\ \frac{2}{t-2} & si & t > 0 \end{cases}$

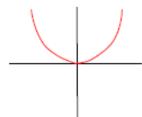
1.4 Esbozos de funciones.

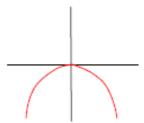
$$f(x) = x$$



$$f(x) = x^2$$

$$f(x) = -x^2$$

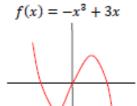


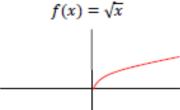


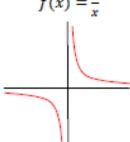
$$f(x) = x^3 + x$$

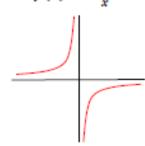
$$f(x) = -x^2 - x$$

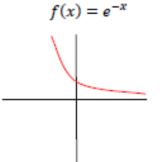
$$f(x) = x^3 - 3x$$



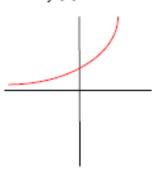








$$f(x) = e^x$$



Viernes 22/5/20: Copiad los apuntes y haced los ejercicios 2 y 3.

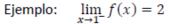
1.5 Límites de una función en un punto.

- Veamos en esta gráfica los siguientes puntos:
 - Es el valor de Y cuando la X vale "a". f(a):

f(3) = 4Ejemplo: f(1) = 2f(2) = 2

 $f(4) = \mathbb{Z}$ $f(5) = \mathbb{Z}$ $\lim_{x\to a} f(x)$: El límite de la función cuando X tiende a "a" por la izquierda.

Queremos saber a qué valor se aproxima la Y cuando la X se aproxima cada vez más a "a" por su izquierda, o sea, con valores menores que "a".



$$\lim_{x \to 2^-} f(x) = 3$$

$$\lim_{x \to 3^-} f(x) = 4$$

$$\lim_{x \to \infty} f(x) = 3.5 \qquad \text{li}$$

$$\lim_{x \to 5^{-}} f(x) = 3$$

 $\lim_{x \to a} f(x)$: El límite de la función cuando X tiende a "a" por la derecha.

Queremos saber a qué valor se aproxima la Y cuando la X se aproxima cada vez más a "a" por su derecha, o sea, con valores mayores que "a".

$$\lim_{x \to 1^+} f(x) = 2$$

$$\lim_{x\to 2^+} f(x) = 3$$

$$\lim_{x \to 3^+} f(x) = 5.5$$

$$\lim_{x \to 4^+} f(x) = 3.5 \qquad \lim_{x \to 5^+} f(x) = 1$$

$$\lim_{x\to 5^+} f(x) = 1$$

- Límites laterales: A hallar estos dos límites anteriores se les llama hallar los límites laterales.
- $\lim f(x)$: El límite de la función cuando X tiende a "a".

Queremos saber a qué valor se aproxima la Y cuando la X se aproxima cada vez más a "a". Pero como hemos visto a la "a" nos podemos aproximar de formas distintas, por la izquierda y por la derecha.

Sólo existirá el límite cuando ambos límites laterales coincidan.

$$\lim_{x \to 1} f(x) = 2$$

$$\lim_{x \to 2} f(x) = 3$$

$$\lim f(x) = \exists$$

$$\lim f(x) = 3.5$$

$$\lim_{x \to 5} f(x) = \mathbb{Z}$$

 $\lim_{x \to 3} f(x) = \mathbb{H} \qquad \lim_{x \to 4} f(x) = 3.5 \qquad \lim_{x \to 5} f(x) = \mathbb{H}$ Por lo tanto, se puede afirmar que $\lim_{x \to a} f(x) = b$, solamente cuando ambos límites laterales coinciden con b, y quiere decir que cuando X tome valores próximos al número "a", tanto mayores como menores, los valores de Y se aproximarán al número b.

Discontinuidad de f(x) en x = a: Se dice que una función no es continua en un punto (en x = a) cuando no existe f(a), o no existe el límite cuando X tiende a "a" (no coinciden los laterales), o no coinciden ambos.

Ejemplo: En la gráfica la función no es continua en: x=2 , x=3 , x=4 , x=5Diremos que la función de la gráfica es continua en \mathbb{R} – $\{2, 3, 4, 5\}$

- Veamos en una función analítica: En una función deberemos de ir sustituyendo los valores para ver qué ocurre. Sea la función $f(x) = \frac{x^2 + 2x}{x}$
 - f(a): Es sustituir en la función el valor "a" y ver cuánto da.

Ejemplo: f(-2) = 0 $f(0) = \mathbb{Z}$

 $\lim_{x \to \infty} f(x)$: Hay que sustituir en la función varios valores menores que "a", pero cada vez acercándonos más a "a" por su izquierda, y ver a qué se va acercando el valor de la Y.

Ejemplo: Para ver $\lim_{x \to -2^-} f(x) \to \text{hallaremos}$ f(-2,01) = -0,01 f(-2,001) = -0,001 f(-2,0001) = -0,0001 $\lim_{x \to 0} f(x) = 0$

Ejemplo: Para ver $\lim_{x\to 0} f(x) \to \text{hallaremos}$ f(-0.01) = 1.99 f(-0.001) = 1.999 f(-0.0001) = 1.9999 $\lim_{x\to 0} f(x) = 2$ Ejemplo: Para ver $\lim_{x\to 3^-} f(x) \to \text{hallaremos}$ f(2.99) = 4.999 f(2.999) = 4.9999

 $\lim_{x\to a^{-1}} f(x)$ Hay que sustituir en la función varios valores menores que "a", pero cada vez acercándonos más a "a" por su izquierda, y ver a qué se va acercando el valor de la Y.

Ejemplo: Para ver $\lim_{x \to -2^+} f(x) \to \text{hallaremos}$ f(-1,99) = 0,01 f(-1,999) = 0,001 f(-1,999) = 0,0001 $\lim_{x \to -2^+} f(x) = 0$

Ejemplo: Para ver $\lim_{x\to 0} f(x) \to \text{hallaremos} \quad f(0,01) = 2,01 \qquad f(0,001) = 2,001 \qquad f(0,0001) = 2,0001$ $\lim_{x\to 0} f(x) = 2$ Ejemplo: Para ver $\lim_{x\to 3^+} f(x) \to \text{hallaremos} \quad f(3,01) = 5,01 \qquad f(3,0001) = 5,0001$

1.6 Cálculo de límites.

En el apartado anterior se ha calculado el valor del límite de una función en un punto, dando valores aproximados a la variable independiente y utilizando una tabla y una calculadora como herramientas.

Sin embargo en muchas ocasiones el cálculo se puede realizar de una forma más directa y rápida.

Para calcular $\lim_{x \to a} f(x) = b$ se sustituye la X por el valor al que se aproxima. Si el resultado es b, ya tenemos el límite de X cuando tiende al número a. En estos casos se obtienen expresiones y resultados que tienen sentido en ℝ, y los límites se llaman determinados. Ejemplo: $\lim_{x\to 4}\frac{x+8}{x-2}=\frac{4+8}{4-2}=\frac{12}{2}=6$ • ¿En qué casos no es válida esta regla para hallar $\lim_{x\to a}f(x)$?

- - En los puntos que no pertenecen al dominio de la función. Allí no podremos sustituir ese valor. Ejemplo: $Dom f(x): \Re - \{3\}$ en x = 3 tendremos que hallar los límites laterales
 - En los puntos que están en el límite del dominio de la función. Ejemplo: $Dom f(x): \Re - [5, +\infty)$ en x = 5 tendremos que hallar los límites laterales
 - En las funciones a trozos, en los puntos que aparecen en las ramas. Ejemplo: $f(x) = \begin{cases} x-5 & si & x \leq 0 \\ 2x+3 & si & x > 0 \end{cases}$ en x=0 tendremos que hallar los límites laterales.

1.7 Límites Infinitos.

A veces nos encontramos que los límites laterales tienden a $+\infty$ ó a $-\infty$

a)
$$\lim_{x \to a^{-}} f(x) = +\infty$$

$$\lim_{x\to a^+}f(x)=-\infty$$

b)
$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$y \qquad \lim_{x \to a^+} f(x) = +\infty$$

Y	
1-	
0	X

Ejemplo:	Calcula $\lim_{x \to 3} \frac{1}{x-3}$
----------	--

$$\begin{cases} \lim_{x \to 3^{-}} \frac{1}{x-3} = -\infty \\ \lim_{x \to 3^{+}} \frac{1}{x-3} = +\infty \end{cases}$$

Ejercicio 3: Calcula los siguientes límites:

a)
$$\lim_{x \to 2} \frac{-1}{x-2}$$

b)
$$\lim_{x \to -1} \frac{x+2}{x+1}$$

c)
$$\lim_{x \to 0} \frac{x+3}{x}$$

X	f(x)
2,9	-10
2,99	-100
2,999	-1000
3,001	1000
3,01	100
3,1	10